skip to main content


Search for: All records

Creators/Authors contains: "Siegmund, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A 2D plane strain extended finite element method (XFEM) model was developed to simulate three-point bending fracture toughness tests for human bone conducted in hydrated and dehydrated conditions. Bone microstructures and crack paths observed by micro-CT imaging were simulated using an XFEM damage model. Critical damage strains for the osteons, matrix, and cement lines were deduced for both hydrated and dehydrated conditions and it was found that dehydration decreases the critical damage strains by about 50%. Subsequent parametric studies using the various microstructural models were performed to understand the impact of individual critical damage strain variations on the fracture behavior. The study revealed the significant impact of the cement line critical damage strains on the crack paths and fracture toughness during the early stages of crack growth. Furthermore, a significant sensitivity of crack growth resistance and crack paths on critical strain values of the cement lines was found to exist for the hydrated environments where a small change in critical strain values of the cement lines can alter the crack path to give a significant reduction in fracture resistance. In contrast, in the dehydrated state where toughness is low, the sensitivity to changes in critical strain values of the cement lines is low. Overall, our XFEM model was able to provide new insights into how dehydration affects the micromechanisms of fracture in bone and this approach could be further extended to study the effects of aging, disease, and medical therapies on bone fracture. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Topologically interlocking material (TIM) systems are constrained assemblies of building blocks with geometry such that individual unit elements cannot be removed from the assembly without complete disassembly. These assemblies can bear load in the absence of adhesive bonds. TIM systems with scutoid‐shaped building blocks are investigated. Scutoids are prism‐like shapes with two polygonal faces and contain vertices on the lateral sides which enable geometric interlocking. The quasi‐static mechanical behavior of two types of scutoid‐based TIM systems is investigated and compared to reference tetrahedron‐based TIM systems. TIM systems are realized as plate‐type assemblies and a central point‐force load is considered. The computational analysis is conducted with the finite‐element method. Scutoid‐based TIM systems are found, in aggregate, to match or exceed the performance of the tetrahedra‐based systems. It is documented that TIM systems in general, but scutoid‐based systems in particular, emerge to possess chiral characteristics. The combination of building block symmetry and assembly symmetry together determines the type of chirality in the mechanical response. Experimental data validates the computational finding. In summary, considering scutoids as building blocks for load‐carrying TIM assemblies opens the pathway to new classes of mechanical behavior in systems where structure and microstructure strongly interact with each other.

     
    more » « less
  3. Kachanov, M. ; Rajagopal, K.R. (Ed.)
    Topologically interlocking material (TIM) systems are composed of convex polyhedral units placed such that building blocks restrict each other’s movement. Here, TIM tubes are considered as rolled monolayers of such assemblies. The deformation response of these assembled tubes under diametrical loading is considered. This investigation employs experiments on additively manufactured physical realizations and finite element analysis with contact interactions. The internal load transfer in topologically interlocking tubes is rationalized through inspection of the distribution of minimum principal stress. A thrust-line (TL) model for the deformation of topologically interlocking tubes is established. The model approximates the deformation behavior of the assembled tubes as the response of a collection of Mises trusses aligned with paths of maximum load transfer in the system. The predictions obtained with the TL-model are in good agreement with results of finite element models. Accounting for sliding between building blocks in the TL-model yields a predicted response more similar to experimental results with additively manufactured tubes. 
    more » « less
  4. A set of three input files for ABAQUS models to simulate the response of tubes built from topologically interlocked building blocks. 
    more » « less
  5. This data set contains STL files to use for 3D printing of tubes made of topologically interlocked building blocks. 
    more » « less
  6. A set of three input files for ABAQUS models to simulate the response of interlocked irregular square tilings subjected to displacement loading. 
    more » « less
  7. Architectured materials are an emerging and exciting class of materials with the promise of advantageous performance and multifunctional properties. These materials are characterized by specific and periodic structural features that are larger than what is typically considered a microstructural length scale (such as a grain size) but smaller than the size of the final component made of the architectured material. This class of materials includes but is not limited to lattice materials and cellular material systems, dense material systems composed of building blocks of well-defined size and shape. The key characteristic distinguishing architectured materials from other materials is their very high morphological control, and architectured materials can therefore be considered high information materials. The tight control of the morphological characteristics allows to predefine and control specific mechanisms of local stress transfer, elastic/plastic buckling, gliding of building blocks, or propagation of cracks along predefined paths. Well-designed architectured materials can generate new and attractive combinations of properties that can be programmed in the material. In particular, the empty spaces and gliding interfaces contained in architectured materials can be exploited to overcome the theoretical bounds that apply to monolithic materials. This IUTAM symposium provides a state of the art on the engineering science of architectured materials and focus on the mechanics, design, fabrication, and mechanical performance of all categories of architectured materials including but not limited to lattice materials, metamaterials, and topologically interlocked materials. 
    more » « less